这次的密码学实验有一个已知 \(e\) , \(d\) 和 \(N\) ,分解 \(N\) 的问题,想了很久(其实没想多久,试了一下就放弃了),然后就到网上找资料。找到了一个很好用的网站,DI Management Home ,都是关于密码学的,里面就有关于这个问题的算法。
Initially we compute \(k = de-1\) . We then choose a random integer \(g\) in the range \(1 \lt g \lt N\) . Now \(k\) is an even number, where \(k = 2^tr\) with \(r\) odd and \(t\geqslant1\) , so we can compute \(x = g^{k/2}, g^{k/4}, \ldots, g^{k/2^t} \pmod N\) until \(x \gt 1\) and \(y = \gcd(x-1, N) \gt 1\) . If so, then one of our factors, say \(p\) , is equal to \(y\) , and the other is \(q=N/y\) and we are done. If we don't find a solution, then we choose another random \(g\) .
DI Management - RSA: how to factorize N given d
简单翻译一下:
首先我们计算 \(k = de-1\) 。然后选择一个随机数 \(g\) ,满足 \(1 \lt g \lt N\) 。 \(k\) 是偶数,所以 \(k = 2^tr\) ,其中 \(r\) 是奇数且 \(t\geqslant1\) ,然后计算 \(x = g^{k/2}, g^{k/4}, \ldots, g^{k/2^t} \pmod N\) ,直到 \(x \gt 1\) 且 \(y = \gcd(x-1, N) \gt 1\) 。 如果这样的 \(y\) 存在,那么其中一个因子 \(p\) 等于 \(y\) ,并且 \(q=N/y\) ,这样就完成了。如果这样的 \(y\) 不存在,就重新生成随机数 \(g\) 。
下面是我的代码,对原算法稍微进行了一点改动。原算法是先计算出 \(t\) 和 \(r\) ,然后依次计算 \(x=g^{k/2^i}\) 。这里我不计算 \(t\) 和 \(r\) ,而是只要 \(k\) 是偶数,就将其除以 2,然后计算 \(x=g^k\) 并判断是否满足条件。这样可以减少一些计算,但是由于 \(t\) 并不大,所以减少的计算有限。
完整代码见MeanZhang/RSA: RSA-Java 。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 public static BigInteger[] attack(BigInteger e, BigInteger d, BigInteger n) { BigInteger[] result = new BigInteger [2 ]; BigInteger k = d.multiply(e).subtract(BigInteger.ONE); Random random = new Random (); while (true ) { BigInteger g = new BigInteger (n.bitLength(), random); while (g.compareTo(BigInteger.ONE) <= 0 || g.compareTo(n) >= 0 ) g = new BigInteger (n.bitLength(), random); BigInteger k1 = k; while (k1.mod(BigInteger.TWO).equals(BigInteger.ZERO)) { k1 = k1.shiftRight(1 ); BigInteger x = g.modPow(k1, n); result[0 ] = x.subtract(BigInteger.ONE).gcd(n); if (x.compareTo(BigInteger.ONE) > 0 && result[0 ].compareTo(BigInteger.ONE) > 0 ) { result[1 ] = n.divide(result[0 ]); return result; } } } }
测试数据:
1 2 3 4 5 6 7 8 9 10 e: 65537 d: 13085102850405329895940153649208766646679432053055210927814587187939575969334380946175257120108607885616731724467899991987963542311668962802613624160423864736904359544115910805381019345850330276964971412664144174157825068713331109139842487999112829255389047329358923488846912437792391102853729375052922599258215311601018992134762683570752403675370812499995354701024990414541327012769030147878934713424171374951602988478984432403148854042370903764361797455965930292322795814453835335323397068237664481359506461188857661605832041501219728374514303209642746672993156029099655958158717907546664548938973389857200804582177 n: 21378032245774894186324720788457768851857953294637267751313371903474996018902810092972224806315945430514626988743400353365786674788848003569698586194388463460699531620948408197942261177369324808332585418351947368544183614904162658914539989430070735676083960582943505227316151479174351490943931346982185481068889458087344890907035731467000101100009111593455801160870652558847164438348031498067369123608755518383163346962891967964682970251625764813457371461595048927486942272152822570449609158417324070867001419543608370026546341531367233199832189762919523227554947408242727690461831545997600374969434706782376320559561 p: 134015724574231629415725856596339106132655429815809390083191653420751276014515665041469448212111089978027787330894345961709429696830117657137052704491606694791519141111894965847240833879740293408266251425861598011543042632576624378597158795956174622709934079034648552634466265913328434606944071200422868130573 q: 159518834925475861956097917917341301031640418209579419960447972340833353891477422457476074816300423813142613130845835933143395284444599641612757310435466623981281701817688676270876235464147642571713805328342460087461430626730047957682558277868352127107752854583156354513612089006699159193484825862868615965357
参考资料